[an error occurred while processing this directive]
 
首 页 | 期刊介绍 | 编委会 | 投稿指南 | 期刊订阅 | 留言板 | 联系我们 | English
冰川冻土 2011, Vol. 33 Issue (6) :1235-1242    DOI:
冰冻圈与全球变化 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | >>
地表能量变化对多年冻土活动层融化过程的影响
李  韧1,2,3,赵  林1,2,3,丁永建1,2,3,王银学1,2,3,杜二计1,2,3,刘广岳1,2,3,肖  瑶1,2,3,孙琳婵1,2,3,刘  杨1,2,3,石  伟1,2,3
1.中国科学院青藏高原冰冻圈观测研究站,甘肃兰州,73000; 2.冰冻圈科学国家重点实验室,甘肃兰州,73000; 3.中国科学院寒区旱区环境与工程研究所,甘肃兰州,73000
The Impact of Surface Energy Variation on the Thawing Processes within the Active Layer
LI Ren 1,2,3, ZHAO Lin 1,2,3, DING Yong-jian 1,2,3,WANG Yin-xue 1,2,3, DU Er-ji 1,2,3, LIU Guang-yue 1,2,3,XIAO Yao 1,2,3, SUN Lin-chan 1,2,3, LIU Yang 1,2,3, SHI Wei 1,2,3
1.Cryosphere Research Station on Qinghai-Xizang Plateau, Chinese Academy of Sciences, Lanzhou Gansu 730000, China ;
2. State Key Laboratory of Cryospheric Sciences, Lanzhou Gansu 730000, China;
3.Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences, Lanzhou Gansu 730000, China
Download: PDF (2439KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 利用青藏高原北部唐古拉综合观测场2006-2008年辐射平衡及活动层温度观测资料,分析了高原北部地表能量变化对活动层融化过程的影响. 结果显示: 该地地表能量具有明显的季节变化特征,总辐射、净辐射、土壤热通量及地面热源强度6-7月最大,11-12月最小;研究时段土壤热通量年平均值0.12 MJ•m-2•d-1,活动层土壤以吸热为主;冻融循环期间,活动层温度垂直变化过程与地表能量的变化过程相似. 活动层的融化厚度与地表能量过程密切相关,融化期间,随地表接收的太阳能的增大,融化厚度逐渐增大,当地表能量积累为0.0 MJ•m-2时活动层的融化深度最小; 随着地表能量的积累,活动层融化深度随之增大,可用乘幂关系描述二者之间的变化过程.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
丁永建
王银学
杜二计
刘广岳
孙琳婵
关键词青藏高原   能量平衡   活动层     
Abstract: Based on the data of radiation balance and active layer temperatures observed at Tanggula Integrated Observation Station from 2006 to 2008, the impact of surface energy on the thawing process within the active layer in the northern Tibetan Plateau are analyzed. It is found that surface energy in this area has significant seasonal variation. The maximums of global radiation, soil heat flux and surface heat source take place in June or July, and the minimums of them take place in November or December. The annual mean soil heat flux during the study period is 0.12 MJ•m-2•d-1, and the active layer is endothermic mainly. During the freeze-thaw cycle period, the vertical variation process of temperature within the active layer is similar to that of surface energy. The surface thawing depth closely relates to the surface energy process. During the thawing period, the thawing depth increases gradually with the increase of solar energy received by ground surface. When the surface energy accumulation is 0, the thawing depth reaches the minimum, and then increases with the accumulation of surface energy. This process can be depicted by a power equation.
KeywordsTibetan Plateau,   energy balance,   active-layer     
收稿日期: 2011-05-05; 出版日期: 2011-12-25
基金资助:

国家自然科学基金项目(40871037;40830533);国家重点基础研究发展计划(973 计划) 项目(2007CB411504);冰冻圈与全球变化重点实验室自主课题(SKLCS-ZZ-2010-03);科技部基础项目(2008FY110200);青海三江源自然保护区生态环境保护和建设工程生态监测本底—冻土监测及综合评估项目.

通讯作者 赵林, E-mail:linzhao@ lzb.ac.cn   
作者简介: 李韧(1970—),男,陕西武功人,副研究员,2005年在中国科学院寒区旱区环境与工程研究所获博士学位,主要从事寒区气候变化、大气辐射及陆面过程等方面的研究.E-mail:liren@lzb.ac.cn
引用本文:   
李, 韧, 赵等 .地表能量变化对多年冻土活动层融化过程的影响[J]  冰川冻土, 2011,V33(6): 1235-1242
LI , REN , ZHAO etc .The Impact of Surface Energy Variation on the Thawing Processes within the Active Layer[J]  JOURNAL OF GLACIOLOGY AND GEOCRYOLOGY, 2011,V33(6): 1235-1242
链接本文:  
http://210.72.80.159/jweb_bcdt/CN/     或     http://210.72.80.159/jweb_bcdt/CN/Y2011/V33/I6/1235
 
[1] Ye Duzhen., GaoYouxi.. Meteorology of Tibetan Plateau [M]. Beijing :Science Press, 1979:89-101. [叶笃正,高由禧.青藏高原气象学[M].北京:科学出版社,1979: 89-101.]
[2] Tao Siyan,Chen Lianshou, Xu Xiangde, et al. The Theory Research Advancement of TIPEX (Part One)[M]. Beijing: Meteorological Press,1999.[陶诗言,陈联寿,徐祥德,等.第二次青藏高原大气科学试验研究进展(一) [M].北京:科学出版社,1999.]
[3] Yao Tandong. The Dynamic Characteristics of Cryospheric in the Middle Part on the Qinghai-Tibetan Plateau[M]. Beijing: Geological Press, 2002. [姚檀栋.青藏高原中部冰冻圈动态特征[M].北京:地质出版社,2002.]
[4] Pan Baotian, Li Jijun. Qinghai-Tibetan Plateau: a driver and amplifier of the global climatic change [J]. Journal of Lanzhou University (Natural Sciences), 1996, 32(1):108-115.[ 潘保田,李吉均.青藏高原:全球气候变化的驱动机与放大器[J].兰州大学学报 (自然科学版),1996,32(1):108-115.]
[5] Feng Song, Tang Maocang, Wang Dongmei. New evidences for the Qinghai-Tibetan Plateau as a pilot region of climate change in China [J]. Chinese Sciences Bulletin, 1998, 43(6):633-636.[冯松,汤懋苍,王冬梅.青藏高原是我国气候变化启动区的新证据[J].科学通报,1998,43(6): 33-636.]
[6] Huang Zhongshu. A preliminary analysis of the correlation between the state of heat and ultra-long wave in the Qinghai-Xizang Plateau[J]. Geographical Research,1986,5(1):32-41. [黄忠恕.青藏高原关系热状况与大气超长波的关系[J].地理研究,1986,5(1):32-41.]
[7] Zeng Qunzu, Xie Yingqin. Discuss the heat effect of the Tibetan Plateau from the surface radiation balance and thermal balance [J]. Chinese Science Bulletin,1980,25(12):552-554. [曾群柱,谢应钦.从地表辐射平衡、热量平衡论青藏高原的热力作用[J].科学通报,1980,25(12):552-554.]
[8] Ji G, Yao L, Yuan F. Characteristics of surface and atmospheric heating fields over Qinghai-Xizang Plateau during the winter in 1982 [J]. Scientia Sinica (Series B), 1986, 29 (8), 876-888.
[9] Li Dongliang, Ji Guoliang, Lu Lanzhi. Impact of Tibetan Plateau surface heating field intensity on northern hemispherical general circulations and weather and climate of China [J]. Science in China(Series D),2001,31(Suppl.):312-319. [李栋梁,季国良,吕兰芝. 青藏高原地面加热场强度对北半球大气环流和中国天气气候异常的影响研究[J].中国科学(D辑),2001,31(增刊):312-319.]
[10] Wang Chenghai, Dong Wenjie, Wei Zhigang. Study on relationship between the frozen-thaw process in Qinghai-Xizang Plateau and circulation in East-Asia [J].Chinese Journal of Geophysics, 2003, 46(3):309-316.[王澄海,董文杰,韦志刚.青藏高原季节冻融过程与东亚大气环流关系的研究[J] .地球物理学报, 2003,46(3):309-316.]
[11] Zhang Tingjun. A important landmark of representation on the Chinese permafrost study [J]. Journal of Glaciology and Geocryology, 2002, 24(3):331-334.[张廷军.代表中国冻土学研究的一个重要里程碑[J].冰川冻土,2002,24(3): 331-334.]
[12] Kou Youguang, Zeng Qunzhu, Xie Weirong, et al. Investigation of solar radiation on Qinghai-Xizang Plateau and its neighboring districts and the relation between the radiation and permafrost on it[J]. Journal of Glaciology and Geocryology, 1981,3(4):25-32.[寇有观,曾群柱,谢维荣,等.青藏高原和邻近地区的辐射及其与高原冻土的关系[J].冰川冻土,1981,3(4):25-32.]
[13] Li Ren, Zhao Lin, Ding Yongjian, et al. The effect of global radiation budget on seasonal frozen depth in the Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2009, 31(3): 422- 430 . [李韧,赵林,丁永建,等.青藏高原总辐射变化对高原季节冻土冻结深度的影响[J].冰川冻土,2009,31(3):422-430.]
[14] Cheng Guodong, Wu Bangjun. Approach to the mathematical model of zonality of high-altitude permafrost[J].Journal of Glaciology and Geocryology, 1983,5(4):1-7.[程国栋,吴邦俊.高海拔多年冻土分布的地带性数学模式之探讨[J].冰川冻土,1983,5(4):1-7.]
[15] Cheng Guodong. Problems on zonation of high-altitude permafrost [J].Acta Geographica Sinica,1984, 39(2):185-193.[程国栋.我国高海拔多年冻土地带性规律之探讨[J].地理学报,1984,39(2):185-193.]
[16] Zhou Youwu, Qiu Guoqing, Guo Dongxin, et al. Geocryology in China [M]. Beijing:Science Press, 2000:1-62.[周幼吾,邱国庆,郭东信,等.中国冻土[M].北京:科学出版社,2000:1-62.]
[17] Ding Yongjian, Ye Baisheng, Liu Shiyin, et al. The observational study on permafrost hydrology on large scale in the Qinghai-Tibetan Plateau[J].Chinese Sciences Bulletin, 2000,45(2):208-214.[丁永建,叶柏生,刘时银,等.青藏高原大尺度冻土水文监测研究[J].科学通报,2000,45(2):208-214.]
[18] Zheng Du, Zhang Rongzhu, Yang Qinye. On the natural zonation in the Qinghai-Xizang Plateau [J]. Acta Geographica Sinica,1979, 34(1):1-11. [郑度,张荣祖,杨勤业.试认青藏高原的自然地带[J].地理学报,1979,34(1):1-11.]
[19] Weng Duming,Gao Qingxian, He Fengpian. Climatological calculations and distribution of soil heat flux over China[J].Scientia Meteorologica Sinica, 1994,14(2):91-98.[ 翁笃鸣,高庆先,何凤翩.中国土壤热通量的气候学计算及其分布特征[J]. 气象科学,1994,1994,14(2):91-98.]
[20] Zhou Yunhua, Xiang Yuejin. The observational accuracy analysis on heat plate [C]//The Study on Agricultural Zoology. Beijing: Sciences Press, 1989: 233-244 [周允华,项月琴. 热流板测量精度分析[C]//农业生态环境研究. 北京:科学出版社, 1989: 233-244 ]
[21] Ji G., Shi X. and Gao W.The variation of surface heating field over northern Qinghai-Tibet Plateau and its effect on climate [J]. Plateau Meteorology, 2001, 20(3):239-244.[季国良,时兴合,高务和.藏北高原地面加热场的变化及其对气候的影响[J].高原气象,2001, 20(3):239-244.]
[1] 陈 伟,张 威,李师翁,等.青藏高原不同类型草地生态系统下土壤可培养细菌数量及多样性分布特征研究[J]. 冰川冻土, 2011,33(6): 1419-1426
[2] 赵拥华;杜二计;刘广岳;岳广阳.青藏高原多年冻土区沼泽草甸土壤CH4产生速率研究[J]. 冰川冻土, 2011,33(5): 999-1005
[3] 李 林;王振宇;徐维新;汪青春;.青藏高原典型高寒草甸植被生长发育对气候和冻土环境变化的响应[J]. 冰川冻土, 2011,33(5): 1006-1013
[4] 李 韧;;赵 林*;;丁永建;;沈永平;季国良;刘广岳;;杜二计;;肖 瑶;;孙琳婵;;刘 杨;;石 伟;.青藏高原地面有效辐射变化及其对表层土温的影响[J]. 冰川冻土, 2011,33(5): 1022-1032
[5] 张秀敏;南卓铜*;吴吉春;杜二计;王通;游艳辉.基于多元自适应回归样条的青藏高原温泉区域的冻土分布制图[J]. 冰川冻土, 2011,33(5): 1088-1097
[6] 周 强;a;李万伦;陈伟涛;王永江.青藏高原天然气水合物形成的空间耦合关系探讨[J]. 冰川冻土, 2011,33(5): 1139-1145
[7] 王帅帅;;周石硚;郑 伟.喜马拉雅山中东段蒙达扛日冰川水文与物质平衡观测研究[J]. 冰川冻土, 2011,33(5): 1146-1152
[8] 赵相卿;李晓军;姚 伟;杨永鹏;程 佳;.G214线苦海滩-黄河沿段多年冻土工程地质特征评价[J]. 冰川冻土, 2011,33(4): 902-907
[9] 杨成松;程国栋.气候变化条件下青藏铁路沿线多年冻土概率预报(I):活动层厚度与地温[J]. 冰川冻土, 2011,33(3): 461-0468
[10] 杨成松;程国栋.气候变化条件下青藏铁路沿线多年冻土概率预报(II):活动层厚度与沉降变形[J]. 冰川冻土, 2011,33(3): 469-0478
[11] 陈世强;吕世华;奥银焕;张 宇;李锁锁;尚伦宇;马 迪.夏季不同天气背景和灌溉条件下绿洲地表辐射和能量平衡特征[J]. 冰川冻土, 2011,33(3): 532-0538
[12] 王增如;杨国靖;何晓波;武震;王杰;赵求东;赵传成;叶柏生.长江源区植物群落特征与环境因子的关系[J]. 冰川冻土, 2011,33(3): 640-0645
[13] 赵求东;叶柏生;丁永建;张世强;上官冬辉;赵传成;王 建;王增如.典型寒区流域水文过程模拟及分析[J]. 冰川冻土, 2011,33(3): 595-0605
[14] 汶林科;崔 鹏;向灵芝;方 华;.西藏东部6-9月降水与中部地-气温差的关系[J]. 冰川冻土, 2011,33(2): 300-308
[15] 朱春玲;马耀明;陈学龙;.青藏高原西部及东南周边地区季风前大气边界层结构分析 [J]. 冰川冻土, 2011,33(2): 325-333
Copyright 2010 by 冰川冻土