[an error occurred while processing this directive]
首 页 | 期刊介绍 | 编委会 | 投稿指南 | 期刊订阅 | 留言板 | 联系我们 | English
冰川冻土 2012, Vol. 34 Issue (6) :1478-1486    DOI:
寒旱区水文水资源 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | >>
尹力1, 赵良菊1,2, 阮云峰1, 肖洪浪1, 程国栋2, 周茅先1, 王芳1, 李彩芝1
1. 中国科学院 寒区旱区环境与工程研究所 内陆河流域生态水文重点实验室, 甘肃 兰州 730000;
2. 中国科学院 寒区旱区环境与工程研究所 冻土工程国家重点实验室, 甘肃 兰州 730000
Study of the Replenishment Sources of Typical Ecosystems Water and Dominant Plant Water in the Lower Reaches of the Heihe, China
YIN Li1, ZHAO Liang-ju1,2, RUAN Yun-feng1, XIAO Hong-lang1, CHENG Guo-dong2, ZHOU Mao-xian1, WANG Fang1, LI Cai-zhi1
1. Key Laboratory of Ecohydrology and Integrated River Basin Science, Cold and Arid Regions Environmental and EngineeringResearch Institute, Chinese Academy of Sciences, Lanzhou Gansu 730000, China;
2. State Key Laboratory ofFrozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences, Lanzhou Gansu 730000, China
Download: PDF (3061KB)   HTML (KB)   Export: BibTeX or EndNote (RIS)      Supporting Info

通过对黑河源区降水、 黑河下游河岸林生态系统、 人工梭梭林生态系统梭梭及戈壁红砂生态系统土壤水和浅层地下水稳定氢氧同位素组成(δD、 δ18O)的测定, 对黑河下游典型生态系统土壤水和浅层地下水的补给源进行了研究. 同时通过对比分析河岸林生态系统胡杨和柽柳、 人工梭梭林生态系统梭梭及戈壁红砂生态系统红砂等优势植物根系水及其对应的土壤水及浅层地下水的δ18O, 对黑河下游典型荒漠植物水分来源进行了研究, 并对不同潜在水源对植物水分来源的贡献率进行了计算. 结果表明: 河岸林生态系统和人工梭梭林生态系统的土壤水和浅层地下水来自黑河源区的降水, 源区降水通过黑河河道输水补给河岸林进而形成土壤水和浅层地下水, 但人工梭梭林的土壤水蒸发作用强烈. 戈壁红砂生态系统由于远离黑河, 土壤水不受黑河源区中上游输水的补给. 就植物水分来源而言, 在河岸林生态系统中, 乔木胡杨主要利用40~60 cm的土壤水和地下水, 灌木柽柳主要利用40~80 cm的土壤水; 人工梭梭主要利用200 cm至饱和层土壤水和地下水; 戈壁红砂主要利用175~200 cm的土壤水. 因此, 在黑河下游极端干旱区, 土壤水和地下水是维持荒漠植物生存、 生长及发育的主要来源.

Email Alert
关键词稳定氢氧同位素组成(&delta   18O、 &delta   D)   黑河下游极端干旱区   植物水分来源     

Based on stable oxygen and hydrogen isotopes (δ18O and δD) of precipitation in the upper reaches of Heihe River and soil water and shallow groundwater of the riparian forest, artificial shrubbery forest and gobi ecosystems in the lower reaches of the river, the replenishment sources of soil water and shallow groundwater of these ecosystems were studied. At the same time, by using the IsoSource software, the plant water sources of these ecosystems in the lower reaches of the river were also investigated according to δ18O values of the root water of the Populous euphratica and the Tamarix ramosissima in the riparian forest ecosystem, the Haloxylon ammodendron in the artificial shrubberies, and the Reaumuria soongorica in the Gobi ecosystem, as well as the δ18O of soil water and groundwater. The results show that soil water and shallow groundwater of the riparian forest and the artificial shrubbery forest are replenished by river water which originates from precipitation in the upper reaches. In addition, there is strong evaporation in the artificial shrubbery forest. Owing to far away from channel of river, soil water of the gobi ecosystem is not affected by river water. In the riparian forest ecosystem, the Populous euphratica takes soil water from 40 cm to 60 cm depths and the groundwater as water resources. Soil water from 40 cm to 80 cm is the main sources of the Tamarix ramosissima. The water sources of artificial Haloxylon ammodendron are come from saturated layers of soil water and shallow groundwater at the depth of 200 cm. In the gobi ecosystem, the Reaumuria soongorica mainly absorbs soil water from 175 cm to 200 cm depth. Therefore, soil water and groundwater are main water sources to maintain survival and growth of the plants in the extremely arid regions in the lower reaches of the river.

Keywordsstable hydrogen and oxygen isotope compositions (δD and δ18O),   the extremely arid regions in the lower reaches of the Heihe River,   plant water sources     
收稿日期: 2012-04-13;

国家自然科学基金项目(91025016;91125025);国家科技支撑项目(2011BAC07B05) 资助

通讯作者 赵良菊     Email: zhlj@lzb.ac.cn
作者简介: 尹力(1985-),女,河北邢台人, 2008年毕业于长安大学, 现主要从事同位素生态水文研究. E-mail: naipo5@163.com.cn
尹力, 赵良菊, 阮云峰等 .黑河下游典型生态系统水分补给源及优势植物水分来源研究[J]  冰川冻土, 2012,V34(6): 1478-1486
YIN Li, ZHAO Liang-ju, RUAN Yun-feng etc .Study of the Replenishment Sources of Typical Ecosystems Water and Dominant Plant Water in the Lower Reaches of the Heihe, China[J]  JOURNAL OF GLACIOLOGY AND GEOCRYOLOGY, 2012,V34(6): 1478-1486
链接本文:     或
[1]Dawson T E, Pausch R C, Parker H M. The role of hydrogen and oxygen stable isotopes in understanding water movement along the soil-plant-atmospheric continuum [M]//Griffiths H, Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. Oxford: Bios Scientific Publisher Limited, 1998: 169-183.
[2]Alessio G A, De Lillis M, Brugnoli E, et al. Water sources and water-use efficiency in Mediterranean coastal dune vegetation[J]. Plant Biology, 2004(6): 350-357.
[3]Gat J R. Oxygen and hydrogen isotopes in the hydrologic cycle [J]. Annual Review of Earth and Planetary Sciences, 1996,24: 225-262.
[4]Ehleringer J R, Roden J, Dawson T E. Assessing ecosystem-level water relations through stable isotope ratio analyses [M]//Osvaldo E S, Robert B J, Harold A M, et al. Methods in Ecosystem Science. New York: Springer-Verlag, 2000: 181-198.
[5]Phillips D L, Newsome S D, Gregg J W. Combining sources in stable isotope mixing models: alternative methods [J]. Oecologia, 2005, 144: 520-527.
[6]Hall-Aspland S A, Hall A P, Rogers T L. A new approach to the solution of the linear mixing model for a single isotope: application to the case of an opportunistic predator [J]. Oecologia, 2005,143: 143-147.
[7]White J W C. Stable hydrogen isotope ratios in plants: a review of current theory and some potential application[M]//Rundel P W, Ehleringer J R, Nagy K A. Stable Isotopes in Ecological Research. New York: Springer-Verlag, 1988: 142-162.
[8]Lin G H, Phillips S L, Ehleringer J R. Monsoonal precipitation responses of shrubs in a cold desert community on the Colorado Plateau[J]. Oecologia, 1996, 106: 8-17.
[9]Li S G, Tsujimura M, Sugimoto A, et al. Seasonal variation in oxygen isotope composition of waters for a montane larch forest in Mongolia [J]. Trees-Structure and Function, 2006,20: 122-130.
[10]Ehleringer J R, Dawson T E. Water uptake by plants: perspectives from stable isotope composition [J]. Plant Cell Environment, 1992,15: 1073-1082.
[11]Brunel J P, Walker G R, Keennett-Smith A K. Field validation of isotopic procedures for determining source water used by plants in semi-arid environment [J]. Journal of Hydrology, 1995, 167: 351-368.
[12]Rodney A C, David J C. Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado U.S.A [J]. Plant and Soil, 2004,260: 225-236.
[13]Ehleringer J R, Phillips S L, Schuster W S F, et al. Differential utilization of summer rains by desert plants [J]. Oecologia, 1991, 88: 430-434.
[14]Thorburn P J, Walker G R. The source of water transpired by Eucalyptus camaldulensis: soil, groundwater, or streams?[M]//Ehleringer J, Hall A, Farqubar G. Stable Isotopes and Plant Carbon-Water Relations. San Diego : Academic Press Inc., 1993: 511-527.
[15]Dawson T E, Pate J S. Seasonal water uptake and movement in root systems of phraeatophytic plants of dimorphic root morphology: a stable isotope investigation [J]. Oecologia, 1996, 107: 13-20.
[16]Dawson T E, Ehleringer J R. Stream side trees that do not use stream water [J]. Nature, 1991, 350: 335-337.
[17]Kolb T E, Hart S C, Amundson A. Water source and physiology at perennial and ephemeral stream sites in Arizona [J]. Tree Physiology, 1997, 17: 151-160.
[18]Smith S D, Wellington A B, Nachlinger J L, et al. Functional responses of riparian vegetation to streamflow diversions in eastern Sierra Nevada[J]. Ecological Application, 1991, 1: 89-97.
[19]Cao Yanli, Lu Qi, Lin Guanghu. Review and perspective on hydrogen stable isotopes technique in tracing plant water sources researches[J]. Acta Ecologica Sinca. 2002, 21(1): 111-117. [曹燕丽, 卢琦, 林光辉. 氢稳定性同位素确定植物水源的应用与前景[J]. 生态学报, 2002,21(1): 111-117.]
[20]Ohte N, Koba K, Yoshikawa K, et al. Water utilization of natural and planted trees in the semi-arid desert of Inner Mongolia, China [J]. Ecological Applications, 2003,13: 337-351.
[21]Zhao Liangju, Xiao Honglang, Cheng Guodong, et al. A preliminary study of water sources of riparian plants in the lower reaches of the Heihe Basin [J]. Acta Geoscientica Sinica, 2008, 29(6): 709-718. [赵良菊, 肖洪浪, 程国栋, 等. 稳定氧同位素在植物水分来源研究中的应用——以黑河下游河岸林植物为例[J]. 地球学报, 2008, 29(6): 709-718.]
[22]Si Jianhua, Feng Qi, Zhang Xiaoyou, et al. Vegetation changes in the lower reaches of the Heihe River after its water import[J]. Acta Bot. Borea-Occident. Sinica, 2005,25(4): 631-640. [司建华, 冯起, 张小由, 等. 黑河下游分水后的植被变化初步研究[J]. 西北植物学报, 2005, 25(4): 631-640.]
[23]Xiao Shengchun, Xiao Honglang, Si Jianhua, et al. Study on the sub-diurnal radial growth of thePopulus euphratica[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 816-822. [肖生春, 肖洪浪, 司建华, 等. 胡杨(Populus euphratica)径向生长日变化特征分析[J]. 冰川冻土, 2010, 32(4):816-822.]
[24]Dawson T E, Ehleringer J R. Isotopic enrichment of water in the"woody" tissues of plants: implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose [J]. Geochim. Cosmochim. Acta, 1993, 57: 3487-3492.
[25]Nelson S T. A simple, practical methodology for routine VSMOW/SLAP normalization of water samples analyzed by continuous flow methods [J]. Rapid Commun Mass Spectrom, 2000, 14: 1044-1046. 3.0.CO;2-3 target="_blank">
[26]Phillips D L. Mixing models in analysis of diet using multiple stable isotopes: a critique [J]. Oecologia, 2001, 127: 166-170.
[27]Phillips D L, Gregg J W. Source partitioning using stable isotopes: coping with too many sources [J]. Oecologia, 2003, 136:261-269.
[28]He Jianqiao. Spatial and Temporal Variations of Stable Isotopes of Precipitation and River Water of the Inland River Basin in Hexi, China . Doctor Thesis, Beijing: the Graduate University of the Chinese Academy of Sciences, 2011. [贺建桥. 河西内陆河流域降水与河水稳定同位素时空变化特征研究. 博士论文, 北京: 中国科学院研究生院, 2011. ].
[29]Zimmermann U, Enhalt D, Munnich K O. Soil-water movement and evapotranspiration: changes in the isotopic composition of the water [J]. Isotopes in Hydrology, Vienna, IAEA, 1967: 567-585.
[30]Allison G B, Hughes, M H. The use of natural tracers as indicators of soil water movement in a temperate semi-arid region [J]. Journal of Hydrology, 1983,60: 157-173.
[31]Asbjornsen H, Mora G, Matthew J H. Variation in water uptake dynamics among contrasting agricultural and native plant communities in the Midwestern U.S [J]. Agriculture, Ecosystems and Environment, 2007, 121: 343-356.
[32]Synder K A, William D C. Water resources used by riparian trees varies among stream types on the Pedro River, Arizona [J]. Agricultural and Forest Metrology, 2000, 105: 227-240.
[33]Busch D E , Ingraham N L, Smith S D. Water uptake in woody riparian phreatophytes of the southwestern United States: a stable study[J]. Ecological Application, 1992, 2: 450-459.
[34]Zhao Wenzhi, Chang Xueli, He Zhibin. Responses of distribution pattern of desert riparian forests to hydrologic process in Ejina oasis [J]. Science in China Series D-Earth Sciences, 2003, 33(Suppl.): 21-30. [赵文智, 常学礼, 何志斌. 额济纳荒漠河岸林分布格局对水文过程响应[J]. 中国科学(D辑), 2003, 33(增刊): 21-30.]
[35]Fan Zili, Ma Yingjie, Zhang Hong, et al. Research of Eonmater table and rational depth of groundwater of Tarim River Drainage Basin [J]. Arid Land Geography, 2004, 27(1): 8-13. [樊自立, 马英杰, 张宏, 等. 塔里木河流域生态地下水位及其合理深度确定[J]. 干旱区地理, 2004, 27(1): 8-13.]
[36]Cao Shengkui, Feng Qi, Si Jianhua, et al. Variations of foliar stable carbon isotope composition and water use efficiency in Populus euphraticafor different plots [J]. Journal of Glaciology and Geocryology, 2012, 34(1): 155-160. [曹生奎, 冯起, 司建华, 等. 不同立地条件下胡杨叶片稳定碳同位素组成及水分利用效率的变化[J]. 冰川冻土, 2012, 34(1): 155-160.]
[37]Mansuer Shabiti, Hu Jiangling. Effects of groundwater characteristics on vegetation in the oasis on the Ugan-Kuqa River delta, Xinjiang region, China [J]. Journal of Glaciology and Geocryology, 2010, 32(2): 422-428. [满苏尔·沙比提, 胡江玲. 新疆渭干河-库车河三角洲绿洲地下水特征对天然植被的影响分析[J]. 冰川冻土, 2010,32(2): 422-428.]
Copyright 2010 by 冰川冻土